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Abstract. We point out that in certain cases, all the differential equations (for given indipendent
and dependent variables) possessing a given symmetry necessarily share a common solution.
Under weaker conditions, all such differential equations have a solution—in general, different
for different equations—characterized by a common symmetry. We characterize this situation
and the common solution, or the common symmetry of solutions, and give concrete examples.

0. Introduction

We are all familiar with elementary occurences of a remarkable phenomenon: in some
cases,all the differential equations possessing a given symmetry share a common solution.

As trivial examples of this fact it suffices to think of reflection-invariant ordinary
differential equations (ODEs) inR1, ẋ = f (x, t) (these are identified byf (x, t) =
−f (−x, t)), which all share the common solutionx(t) ≡ 0; or also reflection and/or
rotation invariant ODEs inRn, which again share the common (trivial) solutionx(t) ≡ 0.

The purpose of this short note is to point out that this phenomenon can be present in
far less trivial cases, for both ODEs and partial differential equations (PDEs); and to give
a way to characterize the common solutions, at least for a relevant class of symmetries, i.e.
the ‘commuting-flow symmetries’ defined below (which are natural in a dynamical systems
geometric approach).

This question can be tackled making use of Michel’s theory (see below), and indeed
our result can be seen as a simple corollary—maybe reaching unexpected fields—of the
original Michel theorem.

A classical result of Michel [1] ensures that, given a finite-dimensional smooth manifold
M with an action of a compact Lie groupG, we can identify the pointsx ∈ M which are
critical for all theG-invariant potentialsV (x). The investigation of Michel was motivated
principally by fundamental problems in physics (the theory of strong interactions) [2], but
the theorem in itself is of a geometric nature and of a much wider applicability to a range
of problems involvingspontaneous symmetry breaking.

The Michel’s result can be suitably generalized to variational problems in function
spaces [3], and it has been recently extended to consider gauge invariant functionals [4].
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On the other side, the proof given by Michel in [1] for his theorem immediately
generalizes to consider equivariant dynamics defined by a vector field onM and its fixed
points; it also guarantees, more generally, the invariance under the equivariant dynamics
of a family of subspaces ofM (identified by sharing a common isotropy subgroup for
the G-action). In this way, one could also readily recover a number of fundamental
results in equivariant dynamics and equivariant bifurcation theory, such as the reduction
lemma of Golubitsky and Stewart [5] and the equivariant branching lemma of Cicogna and
Vanderbauwhede [6], originally obtained with no use of Michel’s theory [7].

It is thus quite natural to ask if, beside the extension of the variational aspects of Michel
theory to infinite-dimensional spaces [4], one could not obtain also a similar extension for its
equivariant dynamics aspects. The purpose of this note is to show that this is indeed the case,
and namely that we can identify subsets of a given function spaceF which are invariant
under any dynamics onF which satisfy certain symmetry requirements with respect to an
algebraG of vector fields; moreover, proceeding pretty much as in the finite-dimensional
case, we can identify functionsf0 ∈ F which are solutions forany differential equation1
which isG-invariant (in a sense to be precisely defined in the following).

Our discussion makes use of ideas and formalisms from the symmetry theory of
differential equations [8–11], which we assume is known—at least in its basics—to the
reader. Also, our discussion will be conducted at a rather formal (in the sense of non-
rigorous) level; thus, in particular, we will assume the existence of flows generated by the
(generalized) vector fields to be considered in the following.

1. Evolutionary vector fields and symmetry

Let us consider a smooth manifoldM = X×Y, where thex ∈ X ⊆ Rq and theu ∈ Y ⊆ Rp
will be thought as, respectively, the independent and dependent variables for the differential
equations to be considered in a moment.

We consider a vector fieldY onM, which we write as

Y =
q∑
i=1

ξ i(x, u)
∂

∂xi
+

p∑
α=1

ϕα(x, u)
∂

∂uα
(1)

(with ξ , ϕ smooth functions onM); as is well known [8], to any such vector field we can
associate anevolutionary representative; this will be denoted byX and is given by

X =
[
ϕα(x, u)−

∑
i

ξ i(x, u)uαi

]
∂α ≡ Qα[u]∂α. (2)

Here we write∂α for ∂/∂uα, and uαi for ∂uα/∂xi (these notations will be understood
throughout in the following; from now on we will also understand summation over repeated
indices). The notationQ[u]—used extensively in the following—means thatQ is a function
of x, u, andu derivatives of any order (although in this case these are only of first order).
We will also writeX asXQ, to stress the association with the vectorQ[u]; more generally,
XP will denote the evolutionary vector fieldXP = Pα[u]∂α.

It should be recalled that, whileY is a legitimate vector field onM, its evolutionary
representativeX should be considered with some extra care; we can either consider it as
a notation for a vector field in the function spaceM (the space of smooth functions from
X ⊆ Rq to Y ⊆ Rp), such that(I + εXQ) transformsf (x) into the function

f̃ α(x) = f α(x)+ ε[ϕα(x, f (x))− ξ i(x, f (x))f αi (x)] (3)
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either as a generalized vector field acting in the jet space associated withM; in this case,
one should more precisely consider the infinite-order prolongationX∗ of X, acting in the
infinite-order jet spaceJ ∗(M), in order to have a proper vector field.

It should also be stressed that, for the argument to be considered below, one could start
directly fromX∗, i.e. consider generalized vector fields rather than be limited to consider
only representatives of geometric vector fields.

Let us now consider a system ofp differential equations for functionsuα = uα(x) ∈M;
this will be written as1[u] = 0 (this will be a vector1α, with α = 1, . . . , p; we will say
for simplicity ‘the equation’1 to refer to this system). With the equation1 we associate
an evolutionary generalized vector fieldX1 given by

X1 = 1α[u]∂α (4)

as it was in the case forXQ, this can be seen either as a vector field onM, either as
denoting the infinite prolongationX∗1 acting inJ ∗(M).

We recall [8] thatXQ is a symmetryof 1 if

X∗Q(1) = 0 (5)

is satisfied whenever1 = 0, and astrong symmetryof 1 if (5) is identically satisfied.

2. Commuting flow symmetries

Given two evolutionary generalized vector fields (EGVF),XP = Pα[u]∂α and XQ =
Qα[u]∂α, we can consider their commutator [XP ,XQ]; this will be again an EGVF
YR = Rα[u]∂α, with

Rα[u] = X∗P (Qα)−X∗Q(P α). (6)

It is easy to check [8] that this gives indeed a proper commutator, i.e. the usual properties
of the commutator are satisfied.

Given a differential equation1, and an EGVFXQ, we say thatXQ is acommuting flow
(CF) symmetryfor 1 if the associated EGVF commute (in the above sense), i.e. if

[XQ,X1] = 0. (7)

For a given equation1, we denote byG1 the set of EGVF which commute withX1
(this is easily seen to be a Lie algebra, withX1 belonging to its centre). Conversely, for a
given EGVFXQ we denote byIQ the set of differential equations which haveXQ as a CF
symmetry; again, theX1 corresponding to1 ∈ IQ form a Lie algebra.

Lemma 1.If XQ is a CF symmetry for1, then it is also a symmetry of1 in the ordinary
sense.

Proof. Indeed, on1 = 0 we have that bothX1 and X∗1 vanish, as it is clear since
X1 = 1α[u]∂α andX∗1 =

∑
J (DJ1

α[u])(∂/∂uαJ ) (hereJ is again a multi-index). Thus,
X∗1(Q) = 0 on 1 = 0 for anyQ, and the vanishing of

[
XQ,X1

]
is equivalent to the

vanishing ofX∗Q(1), which is the condition (4) forXQ to be a symmetry of1 in the
ordinary sense. �
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3. Invariance of fixed-space and common solutions to symmetric equations

With anyXQ : M→ TM we associate the setF(Q) ⊆M of functions which are fixed
points for the vector fieldXQ; equivalently, this means thatQ[f ] = 0 for f ∈ F(Q).
Lemma 2.If XQ is a CF symmetry of1, thenX1 leavesF(Q) globally invariant, i.e.
X1 : F(Q)→ TF(Q).

It may be appropriate—in order to avoid any confusion—to point out that, here and
in the following (see e.g. lemma 3 and the proposition below), when we say thatF(Q)

is ‘globally invariant’ under a vector fieldX we mean that the finite action ofX, esX,
transformsF(Q) into itself for any value of the parameters; this is also equivalent, to
saying thatX is a tangent vector field onF(Q), i.e.X : F(Q)→ TF(Q) as mentioned in
the lemma.

Proof of lemma 2.Let us consider, for the sake of clarity, the integrated version of the
commutation relations (assuming suitable existence and unicity conditions for the flows of
the vector fields); we have—withλ, µ real parameters—that

eλQ[u]eµ1[u](f ) = eµ1[u]eλQ[u](f ). (8)

From f ∈ F(Q) it follows that eλQ(f ) = f , and thus we have that

eµ1[u](f ) ∈ F(Q) ∀µ (9)

from which the lemma follows immediately. �

Corollary. If there exists anf0 ∈ F(Q) isolated inF(Q), then necessarilyf0 is solution
to any1 ∈ IQ.

Proof. In this case,f0 is a fixed point of1[u]; but this is equivalent to being a solution to
1. �

Note that when we speak of an ‘isolated’ function, we are implicitely assumingM is
equipped with some natural topology; in the examples below, in which we consider a space
of L2 functions, this will be theL2 norm. Actually, we could consider any topology in
which the flows ofXQ andX1 are continuous.

The above lemma and corollary are immediately generalized to the case of a whole
algebra of CF symmetries; we denote byG ≡ G1 this (possibly, but not necessarily,
Abelian) algebra, and say thatG is a CF symmetry algebra for1 if [XQ,X1] = 0 for
anyXQ ∈ G. In this case we denote byF(G) the set of functions invariant under all the
XQ ∈ G, and byIG the set of equations for whichG is a CF symmetry algebra. We have
then immediately the following lemma.

Lemma 3.If G is a CF symmetry algebra of1, thenX1 leavesF(G) globally invariant,
i.e.X1 : F(G)→ TF(G).

Corollary. If there exists af0 ∈ F(G) isolated inF(G), then necessarilyf0 is solution of
any1 ∈ IG .

It should be noted that it is not easy to have such an isolatedf0 ∈ F(Q) ⊆M; e.g. in
the case whereQ[u] is a homogeneous linear function ofu, we have that necessarilyF(Q)
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is a linear subspace ofM, and we cannot have isolated points (unlessF [Q] reduces to the
zero function alone).

However, we have so far considered the whole function spaceM; when we deal with
differential equations, we usually have to look for solutions in some given function space,
which we will denote here byF , less general thanM; restricting to a smaller function
space makes it easier to find isolated fixed pointsf0.

Let us consider a closed subspaceF ⊆M, which we think as fixed once and for all.
We have now to consider only those1 such thatX1 are vector fields onF . We can then
obtain again the equivalent of lemma 3 and its corollary given above, provided we consider
now the intersection ofF(G) ⊆M with F .

We summarize our discussion in the following form.

Proposition. Let G be an algebra of EGVF onM, andF(G) the space of fixed points for
G; let F ⊆M be a subspace ofM, such that there exists af0 isolated inF(G)∩F . Then,
any differential equation1 ∈ IG such thatX1 : F → TF admitsf0(x) ∈ F as a solution.

4. Discussion and generalization

The result obtained in the previous section is clearly potentially quite relevant, but not
generally applicable; the reason for this limitation lies in the fact that the existence of a
nontrivial f0 isolated inF(G) ∩ F can amount to a quite strong—and thus restrictive—
condition.

Indeed, let us consider the case where theQ[u] arelinear in theu for all theXQ ∈ G; this
includes in particular—but not only—the case of linearG action. NowF(G) is necessarily
a linear spaceV and therefore, with the exception of the trivial caseF(G) ≡ {0}, there can
be no isolatedf0 ∈ F(G). In this case, as already remarked above, the only way to have
an isolated nontrivialf0 ∈ F(G) ∩F , with f0 ∈ V , is whenF fixes the norm of functions,
e.g. ||f || = 1; this is indeed how the examples in section 5 below, in which we get isolated
points, fit in our frame.

We stress that the condition‖f ‖ = c should not be seen as an artificial one, and actually
it can be a physically natural one: this is e.g. the case whenf (x, t) represents a probability
distribution, or more generally the density of some conserved quantity, and the norm‖f ‖
is chosen to be the spatial integral of such a density,‖f ‖ = ∫

D
f (x, t)dx; thus, even in

the case in which we can have an isolatedf0 only throughF ⊆ {f : ‖f ‖ = c}, our result
has a physical interest.

After clarifying this point, we would like however to mention—and discuss informally—
how our approach can give some interesting results also when we have an isolatedk-
dimensional (k finite) submanifoldEk ≡ E ⊆ F(G), or whenF(G) is itself a finite-
dimensional (linear) space. (Note that in this paperEk will denote a smooth manifold of
dimensionk, not necessarily a linear space.)

The main idea will be that, on the basis of the same kind of argument used above, we
can guarantee the invariance ofE under the dynamics: then we can consider the restriction
of the flow ofX1 to E , which we callXE1, and in this way we are reduced to considering
a finite-dimensional problem. We can then use all the arsenal of standard techniques and
results for the finite-dimensional setting and in particular the same results that we are
generalizing to the functional setting, i.e.—as mentioned in the introduction—the reduction
lemma [5] and the equivariant branching lemma [6]. In this way (essentially, via the
interpretation of lemma 3 as a reduction lemma in infinite dimensions) we can generalize
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our result for isolated pointsf0 ∈ F(G) ∩ F to more complex isolated finite-dimensional
setsE ∩ F ∈ F(G) ∩ F . One can thus obtain a wealth of possible specific results by
considering suitable special settings, essentially reproducing the finite-dimensional theory
in the framework of a functional setting.

We will now briefly mention the extensions of our results that can be obtained along
these lines, at least in the simplest cases; the proofs use different versions of fixed-point
theorems and will be just sketched.

For this extension, we require that there exists a compact setD ⊂ E , itself invariant
under the dynamics: then we are legitimate in considering the restriction of our problem
to D, and can use, thanks to compactness, methods of topological nature to guarantee
the existence of fixed points. Typically, such a compact invariant setD will arise as the
intersection withE of a set which is known to be invariant due to the nature of the problem,
e.g. on the basis of energy considerations: if the energy off is a convex function of‖f ‖
(at least for‖f ‖ large enough), we know that the set of functionsf with energyEf 6 E0,
which is invariant under a conservative or dissipative dynamics, will be compact. It should
be clear that the fixed pointsx1 ∈ D ⊂ Ek ≡ E whose existence can be guaranteed in this
way will be different for different equations1 sharing the same CF symmetry, while the
manifold E—which is identified by the symmetry alone—is common to all such equations
defined in the same function space.

We will denote byCEG ⊂ IG the set of equations1 for which there is a compact and
connected setD ⊂ E globally invariant underX1.

Lemma 4.Let G be an algebra of EGVF onM, andF(G) the space of fixed points for
G; let F ⊆ M be a subspace ofM, such that there exists a curveE ≡ E1 = {fλ} such
that E ∩ F is isolated inF(G) ∩ F . Then, any differential equation1 ∈ CEG such that
X1 : F → TF admits a solutionfλ(1) ∈ (E ∩ F). If E is a line3 = {λf0} = R1, then
any differential equation1 ∈ C3G such thatX1 : F → TF admits a solution of the form
f1(x) = λ1f0(x).

Proof. We give the proof in the case of a line, for ease of notation; the general one is
analogous. ConsiderX31; parametrizing3 = E1 = {λf0} by λ ∈ R, we haveX31 = α(λ)∂λ.
The compact setD ∈ 3 required byX1 ∈ C3G will be an intervalD = [λa, λb] (where
λa < λb), and moreover we haveα(λa) > 0, α(λb) 6 0. We conclude that there exists a
λ1 ∈ D such thatα(λ1) = 0, so that it represents a fixed point ofX31 and hence a solution
to 1. �

It should be mentioned that we would have the same property for equations such that
X1 : E → TE (provided of courseX1 ∈ CEG ) even if it is not true thatX1 : F(G)→ TF(G).
In this caseG would correspond to a kind of ‘conditional CF symmetry’, i.e. a symmetry
valid only in some subset (in this caseE) of the function space in which we operate; in the
application of Lie groups theory to differential equations [8–11], conditional symmetries
[12, 13] have proved to be a specially valuable tool in obtaining concrete solutions.

Lemma 5.Let G be an algebra of EGVF onM, andF(G) the space of fixed points for
G; let F ⊆ M be a subspace ofM, such that there exists ak-dimensional submanifold
E ≡ Ek with E ∩F isolated inF(G)∩F . Then, any differential equation1 ∈ CEG such that
X1 : F → TF admits a solutionf1(x) ∈ (E ∩ F).

Proof. This amounts to the Brouwer fixed-point theorem for mapsh : Dk → Dk, see e.g.
[14]. �
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In many cases of interest, the equations will be known to have a ‘trivial’ solution, e.g.
f (x, t) ≡ 0 (or any other known solutionf0); if this point lies inE , all statements about the
existence of a critical point inE are potentially trivial; moreover, when we deal with linear
Q[u], if we have more than one globally invariant finite-dimensional linear space, these will
intersect in{0} and thus cannot be isolated. Iff = 0 is an unstable critical point forXE1,
however, these problems can easily be cured by consideringE\{0}, and correspondingly, if
{0} ∈ D, a compact invariant submanifoldD\{0}, see below.

Lemma 6.Let G be an algebra of EGVF onM, andF(G) the space of fixed points forG;
let F ⊆M be a subspace ofM, such that there exists ak-dimensionalE ≡ E2j+1 with
k odd andE ∩ F isolated inF(G) ∩ F . Denote byf0 a reference solution lying inE , and
denote byD0 the set of equations1 for which X1(f0) = 0 andf0 is an unstable fixed
point forXE1. Then, any differential equation1 ∈ CEG ∩D0 such thatX1 : F → TF admits
a solutionf1(x) 6= f0 with f1 ∈ E .

Proof. This amounts again to classical results on fixed points; indeed, by an elementary
change of origin inE , we choosef0 = 0; now we consider a diskDk ⊂ E (with k = 2j+1)
such thatDk is globally invariant underXE1, and the punctured diskDk

0 ≡ Dk\{f0}. Now
Dk

0 is homotopic toSk−1, and by a standard topological argument [14] we can reduce it to
consider vector fields onSk−1; it is well known that any vector field onSp has a fixed point
if p is even, and thus the result follows. �

Similar to what happens for the reduction lemma in finite dimensions [5], one could
consider equations1λ depending on real parametersλ ∈ 3 ⊆ Rn, in such a way that
the relevant CF symmetries are such for all values ofλ ∈ 3; in this case, one would
extend to the present setting the results known to hold in the finite-dimensional case; once
again, this just amounts to the fact that we can reduce the problem to the relevant (and
finite-dimensional) fixed spaceE , on which the standard analysis [5, 6] applies.

Finally, we would like to mention that in the standard application of group-theoretical
methods to differential equations [8–11], one of the simplest procedures to find specific
solutions to a given differential equation1 consists of determining its symmetry algebra
G1 and then looking for solutions which are invariant under any subalgebraG0 ⊆ G; the
symmetry invariance is equivalent to anansatz on the form of the solution (this can be
a function of the invariants ofG0 alone), and thus leads to a reduction of the differential
equation, the more considerable the bigger the subalgebraG0 is. It should be noted, however,
that for a general subalgebraG0 we are not guaranteed of the existence of nontrivialG0-
invariant solutions. In this frame, our results can be used as a tool to be surea priori—i.e.
before embarking on considerably complicated computations—that for a given class of
symmetries we have indeed an invariant solution.

5. Examples

Example 1.As a first example, we will deal with the fundamental solution of the heat
equation. Let us considerX = R×R+ andY = R1; thenM is the space ofC∞ functions
f : R2 → R, and in this we select the spaceF of functions which satisfy, with(x, t)
coordinates inX ,∫ +∞

−∞
f (x, t)dx = 1 (10)
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and such thatfx(x, t) go to zero whenx go to infinity.
We considerY = 2t∂x − xu∂u, and correspondingly

X = −(xu+ 2tux)∂u. (11)

Note thatY is one of the Lie-point symmetries of the heat equation [8–11], and it can
be checked thatX is a CF symmetry of it. Moreover, for1 the heat equation, we also
obviously haveX1 : F → TF .

It can be checked easily that the functions inF(Q) are those of the form

f (x, t) = k(t)e−x2/4t (12)

and the intersection of thisF(Q) with F yields an isolated point, which is precisely

f0(x, t) = 1√
4πt

e−x
2/4t (13)

i.e. the fundamental solution of the heat equation.

Example 2.Let us considerX = S1, Y = R, so thatM is the space ofC∞ function
f : S1→ R; in this we select the spaceF of functions which satisfy

‖f ‖2 ≡ 1

2π

∫ 2π

0
|f (x)|2 dx = 1. (14)

We considerY = −∂/∂x, and correspondingly

XQ = ux∂u Q[u] = ux. (15)

Let us now look forF(Q) ∩ F ; F(Q) is given by constant functionsf (x) = c, and
the constraint (14) selects the two functionsf±(x) = ±1. These are obviously isolated in
F(Q) ∩ F .

Let us now determine the1 ∈ IQ; the condition
[
XQ,X1

] = 0 amounts to
∂1/∂x = 0. Indeed,X∗Q =

∑
j (Djux)∂uj , while the first prolongation ofX1 is given

by X(1)1 = 1∂u + (Dx1)∂ux . Thus,

X∗Q(1)−X∗1(Q) =
∑
j

(Djux)
∂1

∂uj
−Dx1. (16)

ExpandingDx1 = 1x +
∑
j (∂1/∂uj )ux,j (whereux,j = Djux), we get that (16) reduces

to 1x .
Thus,1 ∈ IQ are written as

1 = 1(u, ux, uxx, . . .) = 0. (17)

Now we have to check that all such1 which, moreover, haveX1 leavingF invariant admit
f±(x) as solutions.

The requirementX1 : F → TF amounts to asking that

‖eλX1(f )‖ = 1 (18)

whenever‖f ‖ = 1. In the limit λ→ 0+,

eλX1(f ) ' (I + λX1)(f ) ' f + λ1[f ] (19)

and thus

‖eλX1(f )‖2 = ‖f ‖2+ 2λ〈f,1[f ]〉 + o(λ). (20)

As (19) must hold for anyf ∈ F , it must in particular hold onf±; evaluating (20) in
f± we obtain then1(±1, 0, 0, 0, . . .) = 0, i.e. thatf± is a solution to1.
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In order to mention concrete examples of problems to which the present example applies,
consider stationary (i.e. equilibrium) solutions for nonlinear diffusion equations inS1,

ut = 4u+W(u) (17′)

with W(u) a nonlinear term, or directly for a nonlinear wave equation4u+W(u) = 0 for
an incompressible fluid in the unit interval with periodic boundary conditions.

In the first caseu(x) represents a probability density, so that the condition (14) must
indeed be required; in the second case, considering this e.g. for water waves,u(x) represents
the level of the liquid at pointx, and the integral (14) just represents the (normalized) total
mass of the liquid; more generally, we could have any conserved field obeying the wave
equation as an example of the natural occurrence of the condition (14).

Example 3.Let us consider the same setting as in the previous example, but now with
M ≡ F , orM = L2(S1, R): i.e. in this case we are removing the constraint on the norm
of f .

In this case,F(Q) is still given by constant functions, and thus isF(Q) = 3 ≈ R1. The
condition for the existence of a globally invariant disk (i.e. interval)D1 ⊂ F(Q) = R1 can
be expressed as follows when we consider the projectionX31 of X1 onF(Q): this restriction
can be written—using the parametrization of3 in terms ofλ ∈ R1—asX31 = α(λ)∂λ; we
require then that there are constant functionsf1 = λ1 andf2 = λ2 (with λ1 < λ2 andλ1, λ2

finite) such that

α(λ1) > 0 α(λ2) < 0 (21)

and under this condition the equation1 will have a constant solution of finite norm.
If we consider equations of the form (17′), it is clear that constant solutions correspond

to zeros ofW(u); moreover,X31 is justW(u)∂u ≡ W(c)∂c and the above condition (21)
does indeed imply the existence of a stable zero ofX31 in the interval(λ1, λ2), i.e. of a
stable stationary solution, constant inx, of (17′).

Example 4.We consider now an example withu = u(x1, x2) and an algebra of CF
symmetries spanned by two vector fields, i.e.

Y1 = −x1∂x2 + x2∂x1 = −∂θ (22′)

Y2 = x1∂x1 + x2∂x2 + ku∂u = r∂r + ku∂u (22′′)

where(r, θ) are polar coordinates in the(x1, x2) plane; clearly,Y1 represents a rotation in
the independent variables, andY2 a scale transformation.

Correspondingly, we have

X1 = uθ∂u X2 = (ku− uur)∂u (23)

and it is easy to see that

F(Q1) = {u = u(r)}

F(Q2) =
{
u(x1, x2) =

k∑
b=0

cbx
b
1x

k−b
2

}
(24)

(with cb real constants) and therefore

F(G) = {u = αrk} (α ∈ R). (25)

We will consider, for the sake of clarity, only first-order polynomial PDEs, i.e. we
assume

1 = 1(r, θ; u, ur, uθ ) (26)
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this also means that

X
(1)
1 = 1∂u + (Dr1)∂ur + (Dθ1)∂uθ (27)

(in the following computations, we only need this first-order prolongation ofX1). With
this, it follows from straightforward computations that

[X1, X1] = −∂1
∂θ

(28)

[X2, X1] = −k1+ r ∂1
∂r
+ ku∂1

∂u
+ kuθ ∂1

∂uθ
+ (k − 1)ur

∂1

∂ur
. (29)

Equation (28) and the polynomial assumption on1, guarantees that1 ∈ IQ1 implies

1 = γabcdraubucrudθ (30)

moreover, (29) requires that, in order to have1 ∈ IG , only theγabcd with

k(b + c + d − 1) = c − a (31)

can be nonzero.
As instances of equations satisfying these conditions we can quote( u

rk

)α
r
∂u

∂r
+
( u
rk

)β ∂u
∂θ
= 0 (30′)( u

rk

)α 1

r2k−1
u2
θur +

( u
rk

)b 1

r2k−3
u3
r = 0 (30′′)

where in both casesα, β, k are arbitrary integers.
We can now check that indeedX1 leaves the space of functions of the formu = αrk

invariant. In fact,

X1(αr
k) = γabcdraαbrkb(αk)crc(k−1)δd,0

= βγabc0ra+kb+c(k−1) (32)

and it follows from (31) that the exponent ofr in the final expression is justk. This shows
that indeedX1 : F(G)→ TF(G), as claimed.

Let us now consider againF given by the functions of unit norm, where we define

‖f ‖2 = 〈f, f 〉 ≡
∫
D

|f (x1, x2)|2 dx1 dx2 (33)

(hereD is the unit diskr 6 1); in this case the only functions ofF(G) which are also in
F are

f±(x1, x2) = ±α0r
k

[
α0 =

√
(k + 1)/π

]
. (34)

We rewrite the action ofX1 as

(I + εX1)(f ) = f + ε1[f ] (35)

thus—for‖f ‖ = 1—the norm of this is one, i.e.X1 leavesF invariant, if and only if

〈f,1[f ]〉 = 0. (36)

Note thatF(G) is a one-dimensional linear space, so thatX1 : F(G)→ TF(G) means
that necessarilyX1(f ) = λf , for some real numberλ, for anyf ∈ F(G). With this, (36)
means

〈f, λf 〉 ≡ λ‖f ‖2 = 0 (37)

which can be true only forλ = 0. This shows that the condition thatX1 : F → TF
guarantees also that the isolated points inF(G) ∩ F are solutions to1, as claimed by our
theorem.
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The discussion of example 4 could be easily extended to the case where the constraint
‖f ‖ = 1 is removed, essentially as in example 3 above; in this case,3 would be the line
of functionsu = λrk.

Note that now(30′) and(30′′) can be easily solved by the separation of variables, thus
providing an explicit illustration of our results.

Acknowledgments

We would like to warmly thank an unknown referee for pushing us to obtain the extensions
discussed in section 4, instead of dealing only with the restrictive case of isolatedf0 as in
our first version. The research of PM was partially supported by the National Group for
Mathematical Physics (GNFM) of the Italian National Research Council (CNR) and by the
Italian Ministry for Scientific and Technological Research (MURST).

References

[1] Michel L 1971 Points critiques de fonctions invariantes sur une G-variét́e C. R. Acad. Sci., ParisA 272
433–6

[2] Michel L and Radicati L 1971 Properties of the breaking of hadronic internal symmetryAnn. Phys., NY66
758

Michel L and Radicati L 1973 The geometry of the octetAnn. Inst. H. Poincar´e 18 185
[3] Palais R S 1979 The principle of symmetric criticalityCommun. Math. Phys.69 19–30
[4] Gaeta G and Morando P 1997 Michel theory of symmetry breaking and gauge theoriesAnn. Phys., NY260

149–70
[5] Golubitsky M and Stewart I N 1985 Hopf bifurcation in the presence of symmetryArch. Rat. Mech. Anal.

87 107–65
Golubitsky M, Schaeffer D and Stewart I 1988Singularities and Groups in Bifurcation Theoryvol II (New

York: Springer)
[6] Cicogna G 1981 Symmetry breakdown from bifurcationLett. Nuovo Cimento31 600–2

Cicogna G 1990 A nonlinear version of the equivariant bifurcation lemmaJ. Phys. A: Math. Gen.23L1339–43
Vanderbauwhede A 1982Local Bifurcation and Symmetry(Boston, MA: Pitman)

[7] Gaeta G 1995 A splitting lemma for equivariant dynamicsLett. Math. Phys.33 313–20
Gaeta G 1995 Splitting equivariant dynamicsNuovo CimentoB 110 1213–26

[8] Olver P J 1986Applications of Lie groups to Differential Equations(New York: Springer)
[9] Bluman G W and Kumei S 1989Symmetries and Differential Equations(New York: Springer)

[10] Stephani H 1989Differential Equations. Their Solution using Symmetries(Cambridge: Cambridge University
Press)

[11] Gaeta G 1994Nonlinear Symmetries and Nonlinear Equations(Dordrecht: Kluwer)
[12] Levi D and Winternitz P 1989 Non-classical symmetry reduction: example of the Boussinesq equationJ.

Phys. A: Math. Gen.22 2915
[13] Winternitz P 1993 Lie groups and solutions of nonlinear PDEsIntegrable Systems, Quantum Groups and

Quantum Field Theories (NATO-ASI C 409)ed L A Ibort and M A Rodriguez (Dordrecht: Kluwer)
pp 429–95

[14] Milnor J W Topology from the Differentiable Viewpoint(Charlottesville, VA: Virginia University Press)
Guillemin V and Pollack ADifferential Topology(Englewood Cliffs, NJ: Prentice-Hall)


